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The deviation of performance across language families and

There has been a surge in LLM evaluation research to understand LLM capabilities and limitations.

However, much of this research has been confined to English, leaving LLM building and evaluation
for non-English languages relatively unexplored. Several new LLMs have been introduced recently,

tasks

necessitating their evaluation on non-English languages. There has also been a need to detect and
handle contamination of the current benchmarks that are used for evaluation.
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= Expanded the MEGA suite to include 6 new datasets and benchmarked nine new text LLMs such

as PaLM2, Llama2, Mistral, GPT-4, Gemini etc. along with multimodal LLMs such as LLaVA family

as well

= Provided a methodology to analyze and study the overall picture of this exercise
= Presented a thorough contamination analysis of both open-source and commercial LLMs
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Figure 1. Hierarchy of Models and Tasks spread across MEGAVERSE
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= Calculated the deviation of a given experiment ¢ in each Language Family or Task j:
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is the penalized score for the experiment ¢ and is calculated by:
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score; is the normalized score of given Task or a Language Family and | X | stands for the number

= The motivation to apply size penalization stems from the sparsity of the language,dataset and
model combinations. We apply this penalization to limit the biase of outliers and combinations

with limited support.
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Benchmarking Results
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Figure 2. Results for XstoryCloze for monolingual prompting
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Figure 5. The positive scores of the bar-plots denote that the current LLMs are relatively good with those language

Contamination Analysis
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Figure 3. Results for Belebele across all languages and models for monolingual prompting
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= We studied possible contamination for both commercial (Ref Table 1 and 2 ) and open-source
models (Ref Table 3)

Model  ar en fi id Ja ko ru sw te th

GPT-4 -0.25 0.73 045 0.36 0.36 040 0.53 0.40 0.41 0.46
PaLM-2 0.55 0.64 0.0/ 0.16 0.72 0.60 0.61 0.23 NA 0.1/

Table 1. Contamination values for the TydiQA dataset.

Model de es  fr ja ko zh

GPT-4 0.77 0.72 0.66 0.71 0.55 0.44 0.65
PaLM-2 0.23 0.63 0.16 0.23 0.53 0.57 0.32

en

Table 2. Contamination values for the PAWS-X dataset.

Dataset Gemma /B Instruct Llama 2 /B Instruct Mistral /B Instruct
PAWS-X 0.0 0.0 0.0
XCOPA 0.0007 0.0 0.0

XNLI 0.4162 0.0374 0.1148
XQUAD 0.0164 0.0 0.0
XRISAWQO/ 0.0 0.0 0.0
XstoryCloze 0.2917 0.0274 0.2743

Table 3. The statistical test was performed on a total of 5000 test points equally divided amongst all the languages of a
given dataset. Our significance value is 0.001 which is calculated using 1/(1 + r), where r is the number of permutations
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Figure 4. ChrF scores for the LLaVA models, GPT4-Vision, and Gemini-Pro-Vision on XM-3600 using monolingual

prompting
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per shard (for us it is 700). If a value is less than 0.001, then that test set is contaminated for the given model. The it
suffix for the above model stands for Instruction-Tuned variant of that said model.

Takeaways
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= Comprehensive Benchmarking
= Evaluated 22 datasets spanning 83 languages across various models including GPT-4, PaLM2, Gemma, and Mistral

= Performance Disparity

= Larger commercial models generally outperformed smaller open-source ones, especially in low-resource language
scenarios

= GPT-4 Dominance

= GPT-4 emerged as the top performer across most tasks in our study.
= GPT-4-Vision surpassed Gemini-Vision and LLaVA on multimodal datasets.
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= Critical Contamination Insights

= Contamination analysis on both commercial and open-source models underscored its criticality.
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= Emphasizes the importance of safeguarding new evaluation datasets from inadvertent inclusion in training sets.
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